Radiant Floor Installation Methods

<table>
<thead>
<tr>
<th>Radiant Flooring Method</th>
<th>Description</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| 'Thermal Sandwich' on Sub Floor or Slab | A unique ‘thermal sandwich’ is created by placing proprietary TPO plastic base modules on sub-floor or slab, then routing PEX tubing through base and heat reflectors, and covering with thermal mass – typically fiber cement board. | ✓ Easiest, most flexible installation method
✓ Less weight than wet methods
✓ Most efficient – lower water temps
✓ Radiant energy focused on thermal mass
✓ Quick recovery time
✓ Contractor or do-it-yourself installation
✓ Only system with true radiant barrier
✓ Sound deadening | • Requires planning for additional thickness of the thermal sandwich |
| **EasyFloor™ System** | | | |
| **Radiant Warmth the Right WaySM** | | | |

| Wet Methods | |
|-------------| |
| On Floor Concrete Slab | Radiant tubing is placed on sub-floor or building slab. Concrete layer is poured over tubing. | • Requires planning for additional thickness of floor
• Weight—requires sub-floor re-enforcing
• Shrinkage & cracking
• Messy, wet installation
• Long set time – site unavailable
• Won’t flow under drywall
• Requires high water temp
• Slow recovery/cycle time
• Not do-it-yourself
• Difficult to repair
• Requires sealer & crack isolation membrane |
| Gypsum/Concrete Underlayment | Lighter weight concrete by adding gypsum and other additives | • Reduces cracking and shrinkage
• Better thermal mass
• Better acoustic sound reduction
• Less weight than concrete
• Durable | • Requires planning for additional thickness of floor
• Messy, wet installation
• Long set time – site unavailable
• Subject to damage during construction
• Slow recovery/cycle time
• Difficult to repair
• High installation/product costs
• Requires high water temp
• Professional installation only |
<table>
<thead>
<tr>
<th>Radiant Flooring Method</th>
<th>Description</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Under-Floor 'Staple Up' | Thermal tubing is ‘stapled up’ to bottom of sub-floor. A reflective heat distribution cover is placed over tubing. | • Low cost initial cost
• Contractor or do-it-yourself installation | • Requires exposed sub-floor – does not work in restricted areas
• High operating costs – wood sub-floor is very poor thermal mass
• Can be difficult installation
• Requires high water temp
• Weakened joists from heat
• Not applicable to slab floors |
| Grooved Wood on Subfloor | ½” thick plywood sheet with grooves routered through the sheet for the placement of radiant tubing. Some manufacturers have aluminum plate under the plywood. | • Placed on top of subfloor
• Easy installation in large spaces | • Limited flexibility – difficult to work in tight spaces
• No thermal mass – poor efficiency
• Requires high water temp
• Requires special tools and routers to install
• Unknown durability
• Can be noisy when heating tubes expand/contract
• Expensive |
| Grooved Wood Subfloor | Tongue and groove plywood subfloor cut with grooves to accommodate PEX tubing. Aluminum plate bonded to surface for heat transfer. | • Single installation of subfloor and radiant delivery system
• Structural
• Does not require accommodation for height of radiant delivery system
• Can be nailed and cut with conventional carpentry tools | • Difficult to change. Commits building layout at subfloor construction time.
• No thermal mass
• Subject to the wear and tear and mess during construction
• Requires special tools and routers to install
• Slippery when wet
• Not applicable for most remodel jobs
• No DIY Installation |
| Electric Heat Mats | Heating wire secured to a fiberglass net – covered with thin cement | • Useful for supplemental heat in small rooms
• Easy install in open spaces
• Quiet | • Extremely high product costs
• High operating costs – not generally suitable as primary heat source
• No thermal mass
• Difficult to install in irregular spaces
• Durability? |
| Base Board ‘Hot Water’ Heating | Baseboard unit equipped with copper tubing with ‘fins’ that radiate heat into room | • Can work in conjunction with other radiant methods
• Well established method
• Low product costs | • Less efficient than in-floor radiant heat
• Requires very high water temp
• Boiler heat sources only
• Uneven heat like forced air systems
• Noisy as ‘radiators’ heat and cool
• Invasive – affects furniture placement, room use |